Note: Based on my understanding, the purpose of these low-level programming questions is to draw out the participant’s knowledge and usage of reference materials and web knowledge-base searches to derive the answers, demonstrating his approach and thought process. My role as IT Architect for the past 8.5+ years has been to focus on the bigger picture and higher-level architect and design issues that solve specific business problems, so I don’t know the answers to these specific programming questions off-hand (and don’t want to give the impression that I do by going through the actual exercise of copying something off the web, which is done easily enough). Thus, I'm going to answer all these questions by briefly highlighting my approach and thought process for each question, without actually going through the inconsequential exercise of providing the programmatic answer because, based on my experience in consulting, the right answer is always “it depends!” There’s never one absolute “right” answer to any problem, because it depends on the system context, business requirements, and architecture constraints/priorities of the specific solution being built. In addition, the programmatic answers to these questions are trivial enough using reference books, knowledge databases, published API’s, team members/colleagues, and Google searches of best practices and design patterns without having to memorize all the different Java classes, API’s and SQL queries.

Question #1

How do you represent a tree, such as a directory structure where a node can have many children and each child can also have children, in a relational database? Are there any issues with this implementation vs. one where you will know there will only be a fixed number of a few, say 3-4, different levels in the tree?

My background is in application design & modeling, not database modeling, but I do know the general concepts. So, in order to answer this question, I would first need to know requirements to data integrity (level of normalization required), performance (e.g. usage of lookup tables and link tables), change flexibility and ease of maintenance, etc. But to know the best practice for how to actually represent a tree structure in relational tables, I would do a quick Google search on the phrase “represent tree structure in relational database”. I would then read through and filter out the search results to determine which are relevant and trustworthy to the problem at hand. These would be two promising leads I’d look at:

http://www.codeproject.com/cs/database/persisting_trees.asp
http://www.developerfusion.co.uk/show/4633/2/
Of course, besides hitting Google, I would consult with my developers/DBA, colleagues, and internal knowledge databases to see if there’s a more specific best-practice solution.
Question #2

Say you have a table layout like the following

[image: image1.png]Courses

Course Instructors

Name Type. Name Type
Course o nt Courselio nt
Coursefeme | Char(2s) hstuctor charas)

Create a query which will print the all the courses and if one instructor is present display their name, if two instructors are present print both of their names on the row in sorted order, if more than two instructors are present instead of the instructors names display “committee“.

For instance your output would look something like this

	CourseNo
	Instructor1
	Instructor2

	0
	Edward Yourdon
	

	1
	Edward Dijkstra
	Nicholas Wirth

	2
	Comittee
	

Again, my background is not in database design or DBA, but I know basic SQL queries. This would be a trivial answer once I consult the SQL reference books. I believe I would use a combination of SELECT … FROM … WHERE COUNT … and SELECT … FROM … WHERE COUNT …. ORDER BY
Question #3

Write a java program that inserts an object containing a string and an int into a HashSet and then locates the original object via the contains method on the HashSet without using the original object as the parameter to the contains method.

I haven’t used the specific HashSet Java class before, so I don’t know its API and class definition. Once I have its JavaDoc or actually look at the source code in an IDE, then it would be trivial enough. Doing a quick Google Search (http://java.sun.com/j2se/1.4.2/docs/api/java/util/HashSet.html), I see that HashSet is a subclass of AbstractSet, which implements the Set interface, which specifies the contains(Object obj) method.

Now that I see its JavaDoc, I’m confused by this question. It doesn’t make a lot of sense. I’m not sure when or why you would ever have this problem as written – what situation would necessitate locating the original object via the contains() method without using the original object? Why wouldn’t you have a reference to the original object? Besides, contains() doesn’t “locate” the original object – it only returns a Boolean whether that object exists in the HashSet’s collection. So, you would have a reference to the object in the first place to determine whether the object instance is actually contained in the HashSet instance. To actually “locate” (i.e. get the reference pointer) to the object in the HashSet instance, you would need to get its iterator and then iterating through the Iteration.

